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The scattering of a plane wave by a resonator with a narrow coupling channel is considered. The velocity potential of the scattered
wave in this resonator has two series of poles with small imaginary parts, corresponding to the main trap and the coupling channel,
the effect of which inside the trap differs by an order of magnitude. The critical case, when the limiting value for the poles from
both series is the same, is investigated. It is shown that in this case two poles exist, which converge to this limiting value, and
they both inherit resonance properties, characteristic for poles generated by the main trap. The principal terms of the asymptotic
forms of the poles and the scattered wave are constructed. © 2002 Elsevier Science Ltd. All rights reserved.

1. FORMULATION OF THE PROBLEM

Suppose a space is filled with a uniform and isotropic liquid or gaseous medium. It is well known
that in this case the velocity potential U,(x, k) of the scattered acoustic wave, which occurs when a
plane wave Uy(x, k) = ™V s reflected from an ideal rigid body QF, is the solution of Neumann’s
problem

U, _ Y,

L N
on on X €%

(A+kHU. =0, xeQ;
(1.1)
U, =0(r™), -Z—)él—ji—ikUe=o(r—'), r—oeo

r

€

where

Q, =R\ Q%, x=(x,%.%), r=|x} k=|{k|
n is the outward normal, while the complete wave in the region Q° is defined by the equality
Ue(x, k) = Uy(x, K) + Ug(x, k)

We will consider the case when Q° is a trap - a region, homeomorphic to a spherical layer, in which a
narrow coupling channel is cut (see Fig. 1). Suppose Q™ and Q are simply connected bounded regions
inR%, Q" C Q Q% =R\ G, 9Q™™ ¢ C”. We will assume that Q™ the neighbourhood of the origin
of coordinates coincides with the half-space x3 > 0, the region Q% in the neighbourhood of the point
x? =(0,0,-h),h >0 coincides with the half-space x;3 < —h, while the section [0, -} on the Ox; axis
does not contain points from Q" U Q. Further, suppose ® is a bounded region in the x; = 0 plane
with a smooth boundary and w, = {x: x¢' € ®}, 0 < € < 1. The regions Q™ and Q°* are the interior
and exterior of the resonator Q. = Q™ U Q% U x, respectively, where », = ®, x [0, —#] is the coupling
channel. Boundary-value problem (1.1) will be called the perturbed problem, and the limiting internal
(external) problem will be understood to be Neumann’s boundary-value problem for Helmholtz’
equations in the region Q™ (in the region Q%).

Itis well known (see, for example, [1]), that for real k the perturbed problem and the limiting external
problem are uniquely solvable, and their solutions allow of an analytic extension into the complex plane,
which (for fixed €) have a discrete set of poles £, and Z respectively, which lie below the real axis. On
the other hand, it was shown in [2], that in %, there are two series of poles with small imaginary parts,
the first of which, as € — 0, converges to the set £ of natural frequencies (the roots of the eigenvalues)
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of the limiting internal problem, while the second converges to the set Z%" = {mn / h} =1, generated
by the presence of a couphng channel of finite length £ >0. It was shown in {3] that the poles,
which converge to ko € Zi"\ £ where Zi" is the set of simple natural frequencies of the limiting internal
problem, give rise to resonance phenomena in the scattering problem, which consists of the fact that
for k close to k the solution of problem (1.1) increases without limit in the region Q™. This effect has
been called internal resonance.

It follows from results obtained prev1ously [4, 5] that resonance phenomena are also observed at real
frequencies close to zero and to ™2™ in which case, it was shown in [5] that if in the reglon Q"‘ the
qualitative behaviour of the solutions of problem (1.1) at frequencies close to Z\E™ and ="\ =" are
the same: the solution of the perturbed problem differs from the solution of the limiting extemal problem
by O(1) (this effect will be called external resonance), then 1nsxde the trap (i.e. in the region Q'") the
solution of the scattering problem at frequencies close to kg € X° "> is bounded, and at frequencies
close to kg € ="\ = it is of the order of €. Hence, in the first case there is no internal resonance.
This difference in the behaviour of the solutions can be explained by the fact that, in the first case, the
corresponding quasi-eigenfunction (the. residue of the solution at the pole) is concentrated in x,, while
in the second case it is concentrated in Q™. Below we investigate the effect of poles with a small imaginary
part on the scattering of 2 plane wave on Q° in the critical case, when the limiting value kg of these
poles belongs to =" N =, Note that this situation arises for a fixed region Q™ by changing the length
#h of the coupling channel

2. FORMULATION OF THE RESULTS
Below we will construct asymptotic forms of the two poles t¢" and 7{?, which converge to
ko =mm/heZ® NI (21

when € — 0, and, in particular, we will show that

T = ko +eti” + €27 +
where
2
Tin) =_|m'("\|)’0 , Im‘t(z") =_(k0 I(:)lwo) G(ko) (22)
T T +hlo|y)

T = kogo (@) + (=1 (koo (@) +h @ | W2 /2, Wy =y(0)
o(k) = lim 167, x k)P ds>0
=R

qo(®) is a certain real constant, which depends only on the geometry of the region ® and will be
determined in the next section (see formulae (3.27)), o(k) is the transverse section [6] of Green’s
function G¥(x, x'%, k) of the limiting external problem, and y(x) is the eigenfunction of the limiting
internal problem, normahzed in L,(Q™), corresponding to the natural frequency k.
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It follows from the definition of T® and expressions (2.2) that r(ll) # 1:(22), Im rﬁ") = ( and Im 'c(z") <0.
Since the poles 7 of the analytic extension of the solution of problem (1.1) are situated at a distance
|Im | from the real axis, while the solution itself can be considered for real frequencies k, it is obvious
that the solution experiences the greatest effect of the pole for real frequencies k™(e) = Re ™ 4+
O(Im t{”). These frequencies will be called peak frequencies and we will investigate the asymptotic
form U*(x, k™(g)) when

imk™ @)=k, 1KE©)=k"(e)
-0

It is obvious that [ko] = ko By virtue of relations (2.2) the peak frequencies are defined by the
equations

kM (g)=Ret! + €% (2.3)

where ¢ is an arbitrary real number.

We will denote by U(x, k) the complete wave which occurs when a plane wave Uq(x, k) is scattered
by Q (i.e. the sum Uy(x, k) and the solutions of the limiting external problem). We will show that if
relation (2.1) is satisfied, then, as€ — 0

Ut (x; k™ (e) ~ 7' C (T y(x) vy, xeQ™
U (x: k"™ (€)) ~ e 2C"(t)sin(kyxs), X € %, (2.4)
Ut (k™ (£) ~ (=1)"ky | @) C (G (x, x @, kp) + U (x; ky), x € Q%%

where

(_I)mk() l“”‘l’%Uo(xo, ko) ;t(n)
2

cM)= . ,
2k (T =T +h| 0| wi/2)

- (n)
=Im7;

It follows from relations (2.4) that in both cases (i.e. for n = 1 and n = 2) at the peak frequencies
both external and internal resonance is observed.

3. CONSTRUCTION OF THE ASYMPTOTIC FORMS
OF THE POLES

Consider the boundary-value problem with a source

(A+k* g =F, xeQ.; du /on=0, xedQ,
3.1)

u€=0(r_’). auelar—iku€=o(r"), r—eo

Following the approach described previously {4] and bearing in mind that, as is well known [7], the
joint multiplicity of the residues at the poles, which converge to ky € Z1" N > is equal to two, it can
be shown that in this case the analytic extension of the solution of boundary-value problem (3.1), with
k close to kg, has the form

2 \P(")
u(x, k)=, Y (x) [ FonW(y)dy + it (x, k) (3.2)

2
n=l k2 — 12") Q

where, when € — 0, the function i, is bounded, and if moreover, supp F C Q% then i, converges to
the solution u of the limiting external problem in Q% and to zero outside Q (with respect to the norm
L, on any compactum). The quasi-eigenfunctions ¥ for fixed e satisfy the equations

A+t WP =0 in Q,
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the Neumann homogeneous boundary condition on 0Q, and increase exponentially at infinity, and when
£e—0

Y (x)—>0 in Q%

(with respect to the norm L, in any compactum) and

¥Ux) - ay(x) in Q"

. (3.3)

Y (x)-g g }m sin(kox,) >0 in 2,

where o™ and ™ are certain real numbers, normalized by the equation
a(n)2 +B(n)2 =1 (3-4)

Remarks 1. Conditions (3.3) and (3.4) indicate that when & — 0 the norm ¥{ in L,(Q™ U x,) tends to unity.
The form of the principal terms of the asymptotic forms (3.3) itself is a linear combination of the principal terms
of the asymptotic forms of the quasi-eigenfunctions, corresponding to the cases kg € Z{M\E™ and &y e ZM\E"
considered earlier in [5]. In both these cases one quasi-eigenfunction exists with respect to one pole (i.e. instead
of the singular sum with respect to n on the right-hand side of relation (3.2) there is only one singular term), but
the values & = 1 and B = 0 correspond to the first case, and o = 0 and B =1 correspond to the second case in
relations (3.3).

2. The problem of the scattering of a plane wave clearly reduces to boundary-value problem (3.1). In turn, in
order to obtain the principal terms of the asymptotic forms of the solution of problem (3.1) from representation
(3.2), it is sufficient to know the quantities o and B™ and the principal (non-zero) terms of the asymptotic
form Im 7% and ¥ in Q. The determination of the values of these parameters is also the main purpose of the
present section.

We will denote Green’s function of the limiting internal problem by G'(x , y, k) and put
Ve (%, k) = (k§ —k*)ap + €L (D)) + €2 L7 (D, )G™ (X, . k) |,

W (X, k) = (eby + €2 L5X (D, )G (X, ¥, k) |y oy,

. 2 : j 9?2 2
L'D)=Y a,—, Ly(D,)= g ——+ —_—
T & D , L; (D, ng q§=:| D2 jg 3,9y, q§| %29 , (3.5)

2
LXD)=b,+ 3 b, ——
1 (L 2 et 2"ayq

V() = €7 w_ (03) + wo(x3) + Ew, (x3)

where
w_y(#) = c_, sin (kot) (3.6)

and ag, @, A2jm> bjm, -1 and wy(t) and wy(¢) are, for the present, arbitrary constants and functions
respectively. By definition the function yg'(x, k) (the function w{'(x, k) satisfies the equation
(A + Ky = 0 in the region Q™ (the equation (A + k%)Y = 0 in the region Q%) and the Neumann

homogeneous boundary condition on dQ™\{0} (on 9Q™\{xy}) and

W (x, k)= apWow(x)+o(l) as k—k, in Q" \{0) G.7)

The principal terms of the asymptotic forms of the poles and of the corresponding quasi-eigenfunctions
will be sought in the form

T, = ko + €T, +E°T, (3.8)
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W0 =y(x,T,) in QTAS"Eh) (3.9)
W (x) =y (x,T,) in QF\SF(e) (3.10)
¥.x)=yP(x) in x \ (S EH)uSt(ehy) (3.11)

Here and henceforth S™(r) and $°*(r) are spheres of radius R with centres at 0 and x, respectively, while
the subscript n of the corresponding nth pole will henceforth be omitted for brevity (wherever possible).
It follows from relations (3.5)—(3.9) and (3.11) that the normalization conditions (3.3) and (3.4) have
the form

(a¥o) +Btihl@] =1 (3.12)
Hence, we have obtained the first equation for the coefficients ay and c_;.
The function (3.5) obviously satisfies the Neumann homogeneous boundary condition on the

walls of the coupling channel x.. Substituting relations (3.8), (3.11) and (3.5) into the equation
A+ 8)‘I-’t-: = 0 with x e %, we obtain the following equations for the coefficients w;

j+l
Wxy) +kgw, (x3)+ X Aw,_; (x3) =0, ~h<xy<0
i=}

where
A =2kgTy, Ay =T2 +2kyT, (3.13)
It is easy to see that the solutions of these equations are the function (3.6) and the functions

wo(x3) =€ Tx;3 €08(kgx3) + ¢ cos(kgxs) + Asin(kyxs)

1 . .
w), (X}) =C (—E‘fo:g Sln(kox‘_;)"' th3 COS(k0X3 )) - TICOXS Sln(kox3) + (3.14)
+ AT]X} COS(koX})"‘ (& COS(kox3)+ BSin(kox3)

for any constants ¢, ¢1, A and B.

The unknown constants a;, b; and c; will be determined by the method of matched asymptotic
expansions [8], by mtroducmg 1nner expansions in the neighbourhood of the ends of the coupling channel
%xe (in S™ (26'2)NQ, and §* (26'2)NQ;) and matching them with expansions (3.9) and (3.11) at one end
of the channel and with expansions (3.10) and (3.11) at the other end of the channel. It follows from
the definition of y;' and y¢*, the asymptotic form of the function G™ at zero and of the function
G® when |x - xg] — 0 (see, for example, [5]), that

. 2 .
ye(x, k)= ao[\l’o(\l’o +3 wqxq)+(k§ —k2)(_]_+g'“ )]+
g=1 2nr

2 kE-k* ., 1 k2 -k? -, |
+e[w02alq\Vq_'o—Ll (Dx)—' +€20_—_L2(Dx)_+
g=I r 2n r

2n
+O0((r+e+|k—ko|)r+¢€)) when k—k,, x>0, £-0 (3.15)
1 - 1
(x, k) = €b)| —————+ g% |+ — (D +
Ve (0 '(2n|x—x0| 8 ) 2m 1 ¢ ")Ix—xol
+O(£|x—x0|+£2) when k— k), x—x,, €50 (3.16)

where
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'in(D ) z i az : a Lex(D ) b 5 b a
= Ay iy =——— Aro = =0y - S
ALY ox;0xg  g=1 2 ox, L E‘ “ dx,
2
in _ g in - ‘|’0 ___]_
e pnformon-gha-zp]
|
ex = ch , s k — ————
8 [ (% Xo- o) 21t|x—x0|]
X=X
Note that
Img" =0, Img™ = koo(ko) (3.17)

The first of these equations follows immediately from the fact that Green’s function of the limiting

internal problem is real for real k%, while the second equality is well known (see, for example, [9]).
Rewriting the asymptotic forms y¢'(x, T¢) and y¥(x) as x — 0 in the inner variables X = xe!, and

taking relations (3.8), (3.15) and (3.5), (3.6) and (3.14) into account, we obtain that when

e'2 < r < 26" (or, which is the same thing, when €2 < p = |X| < 267%)

winx, 1) = Vg (X) + V" (X) + 0(e%p?)

o . . 3 (3.18)
v (x) = WN(X) +eW"(X) + O(e* X3)
where
; kot 2 9 2 82 |
Vin(X) = agyd + 21| —ay + =z - LA
in 2 2 in
V(X) =ag¥, XI VX, + VYo Z'alq‘l’q —ag2kyTi8 " |~
9= q=
~ Ll gy -2k S (1 +2k 2% J |} 3.19
2| %o - 0'172)'*"5l ((T) +2koT)a, + O‘r,azq)-ax—q 5 (3.19)

Wom(x) = C_|k0X3 +C0
W™ (X) = (c_,T,) + Akg) X; + ¢

Similarly, rewriting the asymptotic forms wg(x, t.) and yM(x) as x — x, in the variables
X = (xo—x)e, and taking relations (3.8), (3.16) and (3.5), (3.6) and (3.14) into account we obtain that
when € < |x — x| < 2¢"2 (or, which is the same thing, when ¢z < p < 2e7%)

W (x, T,) = VI (X) + eV (X) + O(ep?)

(3.20)
v (x) = WE(X) + W (X) + O X3)
where
Ve (X)y= 2| by~ 5, by = |-
2n g=I g an P
ex ex b2 ]
V' (X)=bg™ +==~ (3.21)

2 p
WE (X) = (=™ (c_iko X3 + c_ T, h =)
W(X) = (=)™ ((c_ Ty + Akg) X3 + c_ Th+ ATth—cy)
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Bearing Eqs (3. 18) and (3.20) in mind, and following the method of matched asymptotic expansions,

in the nelghbourhood of the ends of the coupling channel we seek the asymptotic forms of the quasi-
eigenfunctions in the form

‘P"')(x) = (—z)+£v, ( ), xeQ, ﬁS'“(Ze/) (3.22)
¥ (x) =vg ( ) ( ) xeQ, N 5™ (2e/) (3.23)
where
y"(X)= V" X)+ 0™, v (X)=VEX)+0(p7), X, =0
, . (3.24)
y"X)y= W' X)+o()), v X)=V*{X)+o(l), X;<0
when p —> oo.

Substituting expressions (3.8) and (3.2) (expressions (3.8) and (3.23)) into the equation (A +
tH¥™ = 0 in Q,, requiring that the homogeneous boundary conditions for the funcnons (3 22)
(for the function (3. 23)2 be satisfied on 9, and changing to the inner variables X = xe™' (to the inner
variable X = (xo - X)£ '), we obtain the boundary-value problems for v}* (for vf)

A 20, Xevy o =0, Xedy, (3:29)

on
where
Yo ={X: X3 >0U{X: (X}, X;)em, —=< X; < 0}

It was shown in [4] that solutions Z, of boundary-value problem (3.25) exist having the asymptotic
forms

Zy(X)= [—l—:z——+ > do,(m)a; +'§ E dp,s (0 )ax 3% J +0(p™)
(3.26)
Z,X)=X; +§:1 dj’(w)a—?(j(%)+0(p_3)’ j=12
when p — o=, X3 = 0, and the asymptotic forms
Zo(X) = Xy + go(@)+ O(e"),  Z;(X)=g; (0)+0(*™), j=1,2 (3.27)

when p — o, X3 < 0, where p > 0 is the second natural frequency of the two-dimensional Neumann
problem for ~A in w, while the coefficients d; ,, d;, ;, g(w) depend on the geometry of the region ©.
We put

vp"(X) = ¢_1kgZo(X) + ap ¥

. 2 2 .
v (X) = (e Ty + Akg)Zy(X) + agWo X ¥, Z,(X) + (\Vo Zl a,,¥, —ag2koT 8" ) (3.28)
q:

g=1
vg (X} = (=D c_ikoZo(X)
U (X) = (=™ (et + Akg)Zo(X) + by g™

It follows from relations (3.19), (3.21) and (3.26)—(3.28) that the necessary and sufficient conditions
for Egs (3.24) to be satisfied are the equations

Crkodo(@)+ag¥e =¢co. ¢, l01/2="1,a, (3.29)
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2 .
(T + Akg)ge () + ZI (g; (W)ag +a);) ¥; —2a5kyTi8" = (3.30)
/:
(c_yT) + Akg) | @] = ag(T2 + 2k, T,) (3.31)
cakoGo(@) =c_Tih—cy, (=D)7c_jkg O] = by (3.32)
(1T + Akg)go (@) + (=1)"*' bg™ = c_t,h + ATyh— ¢ (3.33)
¢_ydg, (W) = fnl_am C_1dors (@) = ’%0215 (3.34)
2 1
(cy Ty + Aky )y, (W) + agyy 21 Y, d,(0)= Et'((‘ﬁz +2koTy )y, + 2kgT 4,,) (3.35)
q=
(=D)"(c_i T, + Aky) || = b, (3.36)

Solving Egs (3.12), (3.29) and (3.32), we obtain two series of values of ag'), c(_"l), 'rg"), b(l”), c(l")(n =1,
2) and, in particular, we obtain the formulae

o =———0. W=do pmoymlBlVe 337
0 Vol T o =(=1) T (3.37)

T, =T thlw|y3/2

and (2.2) for 7{". Solving Eqs (3.34) and (3.36) we obtain the quantities 2\, a%) and b{". Finally, from
Eqs (3.13), (3.31), (3.33) and (3.35) we determine 4™, ¢, c(l"), a$ and, in particular, we obtain that

ko f o i

(n) _
Im‘tz ———————_———(n)z 2
™" +hloly,

Im g (3.38)

The quantity Im ¢ in formulae (2.2) follows from Eqgs (3.38) and (3.17).

We emphasize that by choosing the coefficients ag’), b!(."), cf,"), aj(:'), a(z'js) and A® which satisfy
Eqs (3.29)~(3.36), we attempted to satisfy Eqs (3.24). Hence, the asymptotic expansions (3.9) and (3.11)
were (in principal terms) matched with the function (3.22) in $™ (26'2) \ § (e%), and the asymptotic
expansions (3.10) and (3.11) with the function (3.23) in S* (2¢'2) \ §°* (¢'2). It follows from relations
(3.5)—(3.11) and (3.37) that

W(x) = DT w(x) g in Q7 S(e)
Y (x) = e(=1)"ky | @] PG (X, X9, k) in QF \Se"(ey’) (3.39)

\Pén)(x) = 846{';) sin(kgx;) in %\ (S (gyZ)U Sin(e% ))

4. THE PRINCIPAL TERMS OF THE ASYMPTOTIC FORMS
OF THE SOLUTIONS FOR SCATTERING PROBLEMS

It follows from relations (3.39) and (3.2) that for the peak frequencies (2.3) the principal terms of the
asymptotic forms of the solution of problem (3.10 (i.e. the problem with an external source) have the
form

u (X, kK(E) ~ e OTMy(x) gy, xeQ”
ug(x; k'"(g)) ~ e'zc(")(t)sin(k0x3). X €%, 4.1)

ug(x; KUEY) ~ (=1)" ko 1@ (DG (%, 'O, ko) + up(x: kg),  x € Q*
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where

I)"'k0|w|<c‘"’)2uo(x0,ko) ~(m)

(n)
L2)
2’(0([12 - t)

=1m12

C(n)(t)

Suppose x(¢) is an infinitely differentiable shear function, identically equal to unity when ¢ < 1 and
zerowhent > 2; L > 0 is a fairly large number such that Q C S(L), d > 0. It is obvious that the function
can also be represented in the form

U (x, k) = Up(x, K)(1 = X(rL™")) + ugs(x, k) (4.2)

where u, is the solution of problem (3.1), and uy is the solution of the limiting external problem in Q¥
with right-hand sides equal to

F=U Ax+22 aa} aali"

Since supp F € Q% then u, and u, are solutions of the problems with an external source.
It follows from relations (4.1), in particular, that :

U%(x, k) = Ug(x, k)1 = X(rL™" ) + ug (X, K),  up(Xq, ko) = U%(x, ko) (4.3)

Substituting relations (4.1) into expansion (4.2) and bearing in mind equality (4.3), we obtain formulae
(2.4) of the principal terms of the asymptotic forms of the complete wave for peak frequencies.

5. CONCLUDING REMARKS

In Section 3, using the method of matched asymptotic expansions, we constructed the first terms of the
asymptotic forms of the poles and the corresponding quasi-eigenfunctions. The remaining terms of
the asymptotic forms (i.e. the complete formal asymptotic expansion) are constructed similarly.
In particular, when matching the following terms of the expansion one determines the constants b

in the definition of y* and B in expressions (3.14). These terms are introduced in order to verify that
they have no cffect on the equations for determining the principal parameters t;, g, by and c_;. For the
cases kg € ZMZM and ky € =M the complete asymptotic forms were constructed earlier in [4, 5].
The complete asymptotic expansion consists of series in powers of €, the coefficients of which are
derivatives of Green’s functions, where the order of these derivatives increases with the power of €.

This research was partially supported by the Russian Foundation for Basic Research (99-01-00139
and 00-15-96038) and the Ministry of Education (E00-1.0-53).
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