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The scattering of a plane wave by a resonator with a narrow coupling channel is considered. The velocity potential of the scattered 
wave in this resonator has two series of poles with small imaginary parts, corresponding to the main trap and the coupling channel, 
the effect of which inside the trap differs by an order of magnitude. The critical case, when the limiting value for the poles from 
both series is the same, is investigated. It is shown that in this case two poles exist, which converge to this limiting value, and 
they both inherit resonance properties, characteristic for poles generated by the main trap. The principal terms of the asymptotic 
forms of the poles and the scattered wave are constructed. 0 2302 Elsevier Science Ltd. All rights reserved. 

1. FORMULATION OF THE PROBLEM 

Suppose a space is filled with a uniform and isotropic liquid or gaseous medium. It is well known 
that in this case the veloci 

2 plane wave Ua(x, k) = ercxT ) 
potential UE(x, k) of the scattered acoustic wave, which occurs when a 
is reflected from an ideal rigid body GE, is the solution of Neumann’s 

problem 

au au, 
(A+k2)UE =O, XER,; -$=-=, x~aR, 

u, = O(r_‘), au, --ikU, =o(r-‘), r+= 
ar 

(1.1) 

where 

R,=R’\s. x=(x,,x~,x~), r=IxI, k=lkl 

n is the outward normal, while the complete wave in the region QE is defined by the equality 

UE(x, k) = U&x, k) + Uo(x, k) 

We will consider the case when QE is a trap - a region,, homeomorphic to a spherical layer, in which a 
narrow coupling channel is cut (see Fig. 1). Suppose Q’” and Q are simply connected bounded regions 
in ~3, ain c Q, OeX = R3 \ iq aQin(ex) E CT’. We will assume that Qi” the neighbourhood of the origin 
of coordinates coincides with the half-space x3 > 0, the region QeX in the neighbourhood of the point 
x(O) = (0 0 A), h > 0 coincides with the half-spacex3 <: -h, while the section [0, -h] on the Ox, axis 
does not’contain points from 52’” U QcX. Further, suppose w is a bounded region in the x3 = 0 plane 
with a smooth boundary and o, = {x: XE-’ E o}, 0 < E 4 1. The regions Sz’” and Qe” are the interior 
and exterior of the resonator 52, = Qin U QeX U x, respectively, where xE = w, x [0, -h] is the coupling 
channel. Boundary-value problem (1.1) will be called the perturbed problem, and the limiting internal 
(external) problem will be understood to be Neumann’s boundary-value problem for Helmholtz’ 
equations in the region 51’” (in the region Qex). 

It is well known (see, for example, [1]), that for real k the perturbed problem and the limiting external 
problem are uniquely solvable, and their solutions allow of an analytic extension into the complex plane, 
which (for hxed E) have a discrete set of poles C, and CeX respectively, which lie below the real axis. On 
the other hand, it was shown in [2], that in C, there are two series of poles with small imaginary parts, 
the first of which, as E + 0, converges to the set Zin of natural frequencies (the roots of the eigenvalues) 
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Fig. 1 

of the limiting internal problem, while the second converges to the set Zch = {mrr / h}“,,i, generated 
by the presence of a coupling channel of finite length h >O. It was shown in [3] that the poles, 
which converge to k0 E $” \ Xch, where $” is the set of simple natural frequencies of the limiting internal 
problem, give rise to resonance phenomena in the scattering problem, which consists of the fact that 
for k close to k. the solution of problem (1.1) increases without limit in the region Q’“. This effect has 
been called internal resonance. 

It follows from results obtained previously [4,5] that resonance phenomena are also observed at real 
frequencies close to zero and to Xch\Cln, in which case, it was shown in [5] that if in the region Bex the 
qualitative behaviour of the solutions of problem (1.1) at frequencies close to Zc?Zin and ZF \ Z* are 
the same: the solution of the perturbed problem differs from the solution of the limiting external problem 
by O(1) (this effect will be called external resonance), then inside the trap (i.e. in the region Qin) the 
solution of the scattering problem at frequencies close to k. E Cch\P’ is bounded, and at frequencies 
close to k,, E Zy\ Fh, it is of the order of E-~. Hence, in the first case there is no internal resonance. 
This difference in the behaviour of the solutions can be explained by the fact that, in the first case, the 
corresponding quasi-eigenfunction (the residue of the solution at the pole) is concentrated in x,, while 
in the second case it is concentrated in Q’“. Below we investigate the effect of poles with a small imaginary 
part on the scattering of a plane wave on QE in the critical case, when the limiting value k. of these 
poles belongs to Cy fl Ph. Note that this situation arises for a fixed region Qin by changing the length 
h of the coupling channel. 

2. FORMULATION OF THE RESULTS 

Below we will construct asymptotic forms of the two poles r(,‘) and zp), which converge to 

k,,=mnlh~CChnC~” 

when E + 0, and, in particular, we will show that 

~~‘=kg+&~l”‘+&‘~:n)+... 

where 

T’“‘=k,q,W+W’ (koqo(W2+hloIy&2, vo=y(0) 

o(k) = /I j I Cex(x, x(O), k) I2 ds > 0 
-r=R 

qo(w) is a certain real constant, which depends only on the geometry of the region 
determined in the next section (see formulae (3.27)) o(k) is the transverse section 
function Gex(x, x (‘) k) of the limiting,external problem, and t@) is the eigenfunction , 
internal problem, normalized in L2(!Y), corresponding to the natural frequency kw 

(2.1) 

(2.2) 

w and will be 
[6] of Green’s 
of the limiting 
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It follows from the definition of T(‘) and expressions (2.2) that ry’ f ri2’, Im z?’ = 0 and Im $) < 0. 
Since the poles r, @) of the analytic extension of the solution of problem (1.1) are situated at a distance 
1 Im $) 1 from the real axis, while the solution itself can be considered for real frequencies k, it is obvious 
that the solution exneriences the greatest effect of the pole for real frequencies k(*)(E) = Re zt’ + 
O(Im @). These frequencies will-be called peak frequencies and we wiil investigate the asymptotic 
form V&(x, k@)(c)) when 

hok”‘)(&) = k,, I k(“)(E) I = kc”)(&) 

It is obvious that ]IQ] = k,,. By virtue of relations (2.2) the peak frequencies are defined by the 
equations 

where t is an arbitrary real number. 

k(“)(c) = Re 2:’ + &‘t (2.3) 

We will denote by @(x, k) the complete wave which occurs when a plane wave UO(x, k) is scattered 
by Sz (i.e. the sum Us(x, k) and the solutions of the limiting external problem). We will show that if 
relation (2.1) is satisfied, then, as E + 0 

@(x; k(“)(E)) - E-‘C’“‘(~)T’“‘W(X)I We, x E Qi” 

U’(X; k(“)(E)) - &-2C’“‘(t)sin(k,x,), x E x, 

Ue(x; k(“)(E)) - (-l)mkO 1 co 1 C(n)(t)GCX(x, x(O), k,)+ U”(,; k,), x E 1(2eX 

where 

(2.4) 

C’“‘(r) = (-l)“‘h~ IO I w;U”(xo, k,) 

2k,(ii:“’ - r)(+ + h 10 I y/i / 2) ’ 
Tt’ = Im ,y) 

It follows from relations (2.4) that in both cases (i.e. for n = 1 and n = 2) at the peak frequencies 
both external and internal resonance is observed. 

3. CONSTRUCTION OF THE ASYMPTOTIC FORMS 
OF THE POLES 

Consider the boundary-value problem with a source 

(A+k*)u,=F, XEQ; ih,/ih=o, xEaR, 

uE = O(r-’ ). au, /Jr-i&u, = o(r-I), r + m 
(3.1) 

Following the approach described previously [4] and bearing in mind that, as is well known [7], the 
joint multiplicity of the residues at the poles, which converge to k. E Cl” n Zch, is equal to two, it can 
be shown that in this case the analytic extension of the solution of boundary-value problem (3.1), with 
k close to ko, has the form 

q(x,k)= i y’“)(x) j F(y)Y;“‘(y)dy + i&(x, k) 
n=l k2 -t;)* Q, (3.2) 

where, when E + 0, the function ii, is bounded, and if moreover, supp F C Qe”, then U, converges to 
the solution u. of the limiting external problem in Qe” and to zero outside Q”’ (with respect to the norm 
L2 on any compacturn). The quasi-eigenfunctions Y’, @) for hxed E satisfy the equations 

(A+%, (n)2)yzn) = 0 in Q, 
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the Neumann homogeneous boundary condition on && and increase exponentially at infinity, and when 
&JO 

Vi”‘(x)-+ 0 in Qex 

(with respect to the norm L2 in any compactum) and 

Y:“‘(x) + a’“+(x) in ai” 

sin(&, ) + 0 in xC 

where a@) and PC’) are certain real numbers, normalized by the equation 

aw2 +p2 = 1 

(3.3) 

(3.4) 

Remarks 1. Conditions (3.3) and (3.4) indicate that when E + 0 the norm ‘I$) in Lr(sZ’” u x,) tends to unity. 
The form of the principal terms of the asymptotic forms (3.3) itself is a linear combination of the principal terms 
of the asymptotic forms of the quasi-eigenfunctions, corresponding to the cases ks E C;“\Zch and ks E ZchE’” 
considered earlier in [5]. In both these cases one quasi-eigenfunction exists with respect to one pole (i.e. instead 
of the singular sum with respect to n on the right-hand side of relation (3.2) there is only one singular term), but 
the values CL = 1 and b = 0 correspond to the first case, and CL = 0 and p =l correspond to the second case in 
relations (3.3). 

2. The problem of the scattering of a plane wave clearly reduces to boundary-value problem (3.1). In turn, in 
order to obtain the principal terms of the asymptotic forms of the solution of problem (3.1) from representation 
(3.2) it is sufficient to know the quantities a (‘) and PC”) and the principal (non-zero) terms of the asymptotic 
form Im rp) and ‘I$) in Qex. The determination of the values of these parameters is also the main purpose of the 
present section. 

We will denote Green’s function of the limiting internal problem by G’“(x) y, k) and put 

~~(x,k)=(k~-k2)(u0+~~(D~)+E2L1L”(D,))Gi”(X.Y~~)ly~O 

\yF(x, k) = (Eb, +&*L;“(Dy))Gex(x~ Y9 k)l,=xo 

L’,“(D,) = f: qq a, 
q=l ah 

gyD,)= i & a2 * a -+Ca* - 
j=l q=l *Jq ayiayq q=I q ay, (3.5) 

Ly(D,,)=b,+ i b 
a 

q=* 2q ay, 

‘4’;h(X) = E-’ W-, (X,) + Wo(x3) + Ew, (x,) 

where 

w_,(f) = c_I sin (kuf) (3.6) 

and ~0, aj,,,, 

respectively. 
a2jm, bj~, c_~ and we(t) and wr(t) are, for the present, arbitrary constants and functions 

(A + k2)t$’ 
By definition the function wp(x, k) (the function @(x, k) satisfies the equation 

= 0 in the region 52’” (the equation (A + k2)wF = 0 in the region Qex) and the Neumann 
homogeneous boundary condition on aQ’“\{O) (on ZKJ”“\{xs)) and 

~~(~,k)=a~~~~(x)+o(l) as k+k, in n’“\(O) (3.7) 

The principal terms of the asymptotic forms of the poles and of the corresponding quasi-eigenfunctions 
will be sought in the form 

‘5, - k, + ET, + E2T2 (3.8) 
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YC(x) - wy(x, rE) in &TX \ P(&) (3.10) 

YE(x) = ljf$(x) in x, \ (.SeX(EYZ)uSin(&)) (3.11) 

Here and henceforth sin(r) and ,Tex(r) are spheres of radius R with centres at 0 and ~0 respectively, while 
the subscript n of the corresponding nth pole will henceforth be omitted for brevity (wherever possible). 
It follows from relations (3.5)-(3.9) and (3.11) that the normalization conditions (3.3) and (3.4) have 
the form 

(a,Wa)*+)/2C~,hlOl=l (3.12) 

Hence, we have obtained the first equation for the coefficients a0 and c_~. 
The function (3.5) obviously satisfies the Neumann homogeneous boundary condition on the 

walls of the coupling channel x,. Substituting relations (3.8), (3.11) and (3.5) into the equation 
(A + z~)‘P& 4 0 with x E xE, we obtain the following equations for the coefficients Wj 

w,“(x,)+k,2Wj(x,)+‘~‘~;wj_i(x))=0, -h<x,<O 
i=l 

where 

h, =2k,z,, k, = T; + 2k,T, (3.13) 

It is easy to see that the solutions of these equations are the function (3.6) and the functions 

q(x3) = c_, 
( 

122. 
-2’5’ x3 sm(kox3) + t2x3 cos(kox3> 

) 
- z,cox3 sin(k,x,) + (3.14) 

+ AT,x, cos(k,x,)+c, cos(k,x,)+ Bsin(k,x,) 

for any constants CO, cl, A and B. 
The unknown constants Uj, 6j and cj will be determined by the method of matched asymptotic 

expansions [8], by introducing inner expansions in the neighbourhood of the ends of the coupling channel 
x, (in S’” (2&)nQ, and Sex (2dh)nC&) and matching them with expansions (3.9) and (3.11) at one end 
of the channel and $h expansions (3.10) and (3.11) at the other end of the channel. It follows from 
the definition of wp and @, the asymptotic form of the function G’” at zero and of the function 
GeX when Ix - xc] + 0 (see, for example, [5]), that 

i-O((r+&+)k-koI)(r+&)) when k-k,, x+0, &+O 

y~y (x, k) = eb, 
1 

2rcIx-x0 1 
+p 

+ 0(&1x-x0 I+&*) when k+ k,, x+x0, Ed0 

(3.15) 

(3.16) 

where 
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<““(D,)=b, - i b2& 
q=l 4 

Note that 

Im g’” = 0, Im g’” = koo(ko) (3.17) 

The first of these equations follows immediately from the fact that Green’s function of the limiting 
internal problem is real for real k2, while the second equality is well known (see, for example, [9]). 

Rewriting the asymptotic forms vF(x, z,) and w”,~(x) as x + 0 in the inner variables X = x&-l, and 
taking relations (3.8), (3.15) and (3.5), (3.6) and (3.14) into account, we obtain that when 
E ‘12 < r c 2~~12 (or, which is the same thing, when &-l/2 < p = IX] 4 2&-“2) 

v;(x,r,)= V,‘“(X)+&~i”(X)+O(&2p2) 

vih(x)= W~“(X)+E~#“(X)+O(E~X~) 
(3.18) 

where 

kO? Vi”(X) = a,yti + R 

V,‘“(X) = a0v0 i wqXq + 
q=I 

- ao2kof,g in - 

- 2koT,)+ i ((2: + 2k,r,)a,, + 2ko~,a2,)- 
q=I 

(3.19) 

W,‘“(X) = c_,koX3 +co 

W,‘“(X) = (c_,z, + Ak,)X, +c, 

Similarly, rewriting the asymptotic forms wp(x, 2,) and vzh(x) as x + ~0 in the variables 
X = (xg - x)&-l, and taking relations (3.8), (3.16) and (3.5) (3.6) and (3.14) into account we obtain that 
when &‘/I < ]x - x,,( c 2& (or, which is the same thing, when &-‘h < p < 2&-r/2) 

v:(X, rE)= voe"(x)+&~eX(x)+O(E2p2) 

W$(X)= Wo’X(x)+EW,eX(x)+~(&2x;) 

where 

V,‘“(X) = $7 -j,b2qg-); 

v,‘“(X) = b,ge” + 2; 

(3.20) 

(3.21) 

W,‘“(X)=(-l)“+‘(c_,k,X, +c_,r,h-co) 

y’“(X) = (-l)m+‘((c_,~, + Ako)X3 + c_,z,h + AT& -c,) 
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Bearing Eqs (3.18) and (3.20) in mind, and following the method of matched asymptotic expansions, 
in the neighbourhood of the ends of the coupling channel we seek the asymptotic forms of the quasi- 
eigenfunctions in the form 

Y’,‘“‘(x) = vt (;)+#(%), XER,f-d”(2E~) (3.22) 

(3.23) 

where 

y’“(X) = if”(X)+ O(p4”), vi’“(X) = Y’“(X)+ O(p_3”), x3 2 0 
(3.24) 

L+‘“(X)= y’“(x)+o(l), uj’“(X)=~=“(X)+o(l), x3 <o 

whenp-+=. 
Substituting expressions (3.8) and (3.2) (expressions (3.8) and (3.23)) into the equation (A + 

T~)Y(E”) = 0 in !&, requiring that the homogeneous boundary conditions for the functions (3.22) 
(for the function (3.23)) b e satisfied on a&, and changing to the inner variables X = x&-l (to the inner 
variable X = (xg - X)E- ), we obtain the boundary-value problems for $’ (for UT) 

A”ji”‘er) 
a idex) _ =o. XEy,; -vi 

an 
-0, XEay, (3.25) 

where 

YO =(X:X3>O)u(X:(X,,X,)Ew, -=<x,a 0) 

It was shown in [4] that solutions Z4 of boundary-value problem (3.25) exist having the asymptotic 
forms 

z.)(X) = ( -e+ i do,(o) 
a2 

I=1 
&+ i i 4,J~F--- 

, I=1 s=l 1 I+O(p-4) avx, P 

a 1 
Zjtx)= Xj + ~ dj,(O)- - +o(p-3), j = I, 2 

1=I 0 ax, P 

(3.26) 

when p -+ =,X3 2 0, and the asymptotic forms 

Z,(X)= x, +q&)+o(e~xJ), 4 (X,=qj (co)+O(P3), j = 1.2 (3.27) 

when p + 00, X3 c 0, where p > 0 is the second natural frequency of the two-dimensional Neumann 
problem for -A in o, while the coefficients di,r, d., , I, s, qi(W) depend on the geometry of the region w. 

We put 

Ud”(X) = c&Z,(X) + a&J; 

u,‘“(X) = (c,z, + A&,Z-JX)+ a,vo f: V&‘,(X)+ 
g=l C 

w. i LJ,~W~ -ao2kor,gi” 
1 

(3.28) 
q=l 

g(x) = (-l)m+‘c_,k,Z,(X) 

uF(X)=(-l)m+‘(~_lt, +Ak,)Z,(X)+b,g’= 

It follows from relations (3.19), (3.21) and (3.26)-(3.28) that the necessary and sufficient conditions 
for Eqs (3.24) to be satisfied are the equations 

c_,k,q,(o)+a,Y; =c,, c_, Iwl/2=T,a, (3.29) 
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(C-ITI + A~)%t”)+ \IrO ~ (cl tw)uO +Ulj)Wj -ZUOkOo,g’” = CI (3.30) 
j=l 

tc_,r, +Ak,)lol =ao(r;+2k0r2) 

c-,&%(o) = c_,r,h -co, (-l)mc_,ko 101 = 6, 

(C-I% +&,)qo(w)+(-l) m+‘b,gex = c_,@I + Az,h - c, 

c_,d,,(w) = :u,,, 

(3.31) 

(3.32) 

(3.33) 

(3.34) 

(-U”(c-,q +Ak,)lol =b2 (3.36) 

Solving Eqs (3.12), (3.29) and (3.32), we obtain two series of values of ut), c?), $), bt), cy)(n = 1, 
2) and, in particular, we obtain the formulae 

(a) = 
T(R) 

00 -- 
VOT, ’ 

,I;)=&, b,‘“)=(_l)mkoIwIWo 
T, TI 

(3.37) 

and (2.2) for z?). Solving Eqs (3.34) and (3.36) we obtain the quantities u$‘, a$; and b(;t). Finally, from 
Eqs (3.13), (3.31), (3.33) and (3.35) we determine A@), $I, cl”), a$) and, in particular, we obtain that 

(3.38) 

The quantity Im z, (*I in formulae (2.2) follows from Eqs (3.38) and (3.17). 
We emphasize that by choosing the coefficients at’, by), ct’, a;), a$: and A(“) which satisfy 

Eqs (3.29)-(3.36), we attempted to satisfy Eqs (3.24). Hence, the asymptotic expansions (3.9) and (3.11) 
were (in principal terms) matched with the function (3.22) in 5’” (2&) \ Sin (&), and the asymptotic 
expansions (3.10) and (3.11) with the function (3.23) in Sex (2~~12) \ Se” (~“2). It follows from relations 
(3.5)-(3.11) and (3.37) that 

T:“‘(x)= c~)T’“‘y(x)/yo in 0’” \ S’“(E%) 

Y:“‘(x) = e(-l)“ko 10 I c$)Gex(x, x0, k,) in Qex \ Se”(&) (3.39) 

Y:“‘(x) = a-‘c.11) sin(kox3) in X, \ (Se”(&)” Sin(&)) 

4. THE PRINCIPAL TERMS OF THE ASYMPTOTIC FORMS 
OF THE SOLUTIONS FOR SCATTERING PROBLEMS 

It follows from relations (3.39) and (3.2) that for the peak frequencies (2.3) the principal terms of the 
asymptotic forms of the solution of problem (3.10 (i.e. the problem with an external source) have the 
form 

u,(x; k(“)(E)) - &-'~(")(t)T("'~(x)/~~. x E Qi” 

u,(x; k(“)(E)) - &-*c’“‘(t)sin(kox3), x E Xt (4-l) 

u,(x; k%)) - (-l)“ko I o I c”‘)(t)Gex(x, x(O), k,)+ uo(x; k,), x E Qex 
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c(“)(t) = (-~)“‘k~ 1 o~(ci;))~u~(xo~ k,) 
2k,(i?:“’ -t) 

. ?:“’ = Im q 

Suppose x(t) is an infinitely differentiable shear function, identically equal to unity when t c 1 and 
zero when t > 2; L > 0 is a fairly large number such that 0 C S(L), 6 > 0. It is obvious that the function 
ti can also be represented in the form 

U&(x, k)= I/,(x, k)(l -x(rL-‘))+u6(x, k) (4.2) 

where u, is the solution of problem (3.1), and u. is the solution of the limiting external problem in Qe” 
with right-hand sides equal to 

F = U”Ax+2c -- 3 axauo 
;=, ax; axi 

Since supp F E !Aex, then U, and u. are solutions of the problems with an external source. 
It follows from relations (4.1), in particular, that 

U”(x, k) = Uo(x, k)(l - x(d-’ I)+ uo(x, k), uo(xo, k,) = U’(x,, ko) (4.3) 

Substituting relations (4.1) into expansion (4.2) and bearing in mind equality (4.3) we obtain formulae 
(2.4) of the principal terms of the asymptotic forms of the complete wave for peak frequencies. 

5. CONCLUDING REMARKS 

In Section 3, using the method of matched asymptotic expansions, we constructed the first terms of the 
asymptotic forms of the poles and the corresponding quasi-eigenfunctions. The remaining terms of 
the asymptotic forms (i.e. the complete formal asymptotic expansion) are constructed similarly. 
In particular, when matching the following terms of the expansion one determines the constants bQ 
in the definition of vex and B in expressions (3.14). These terms are introduced in order to verify that 
they have no effect on the equations for determining the principal parameters 5, ao, b1 and c_~. For the 
cases k. E CpLXch and k. E Xch\C’” the complete asymptotic forms were constructed earlier in [4, 51. 
The complete asymptotic expansion consists of series in powers of E, the coefficients of,which are 
derivatives of Green’s functions, where the order of these derivatives increases with the power of E. 

This research was partially supported by the Russian Foundation for Basic Research (99-01-00139 
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